Dynamics, Control, and Stabilization of Turning Flight in Fruit Flies

نویسندگان

  • LEIF RISTROPH
  • GORDON J. BERMAN
  • JOHN GUCKENHEIMER
  • JANE WANG
  • ITAI COHEN
چکیده

Complex behaviors of flying insects require interactions among sensory-neural systems, wing actuation biomechanics, and flapping-wing aerodynamics. Here, we review our recent progress in understanding these layers for maneuvering and stabilization flight of fruit flies. Our approach combines kinematic data from flying insects and aerodynamic simulations to distill reduced-order mathematical models of flight dynamics, wing actuation mechanisms, and control and stabilization strategies. Our central findings include: (1) During in-flight turns, fruit flies generate torque by subtly modulating wing angle of attack, in effect paddling to push off the air; (2) These motions are generated by biasing the orientation of a biomechanical brake that tends to resist rotation of the wing; (3) A simple and fast sensory-neural feedback scheme determines this wing actuation and thus the paddling motions needed for stabilization of flight heading against external disturbances. These studies illustrate a powerful approach for studying the integration of sensory-neural feedback, actuation, and aerodynamic strategies used by flying insects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Body appendages fine-tune posture and moments in freely manoeuvring fruit flies.

The precise control of body posture by turning moments is key to elevated locomotor performance in flying animals. Although elevated moments for body stabilization are typically produced by wing aerodynamics, animals also steer using drag on body appendages, shifting their centre of body mass, and changing moments of inertia caused by active alterations in body shape. To estimate the instantane...

متن کامل

Effects of Flight Dynamics on Performance of One Axis Gimbal System, Considering Disturbance Torques

The gimbal stabilization mechanism system is used to provide the stability to an object mounted on the gimbal by isolating it from the base angular motion and vibration. In this paper the model of one axis gimbal system with dynamics flying object is introduced. The gimbal torque relationships are obtained using Newton’s second law equation on the assumption that gimbal is rigid body. The syste...

متن کامل

The role of experience in flight behaviour of Drosophila.

Experience plays a key role in the acquisition of complex motor skills in running and flight of many vertebrates. To evaluate the significance of previous experience for the efficiency of motor behaviour in an insect, we investigated the flight behaviour of the fruit fly Drosophila. We reared flies in chambers in which the animals could freely walk and extend their wings, but could not gain any...

متن کامل

Active and passive stabilization of body pitch in insect flight

Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilizat...

متن کامل

A Neural Adaptive Controller in Flapping Flight

In this paper, we propose a neural adaptive controller for attitude control in a flapping-wing insect model. The model is nonlinear and subjected to periodic force/torque generated by nominal wing kinematics. Two sets of model parameters are obtained from the fruit fly Drosophila melanogaster and the honey bee Apis mellifera. Attitude control is achieved by modifying the wing kinematics on a st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012